New Euler-Maclaurin Expansions and Their Application to Quadrature Over the s-Dimensional Simplex
نویسندگان
چکیده
The (i-panel offset trapezodial rule for noninteger values of u, is introduced in a one-dimensional context. An asymptotic series describing the error functional is derived. The values of u for which this is an even Euler-Maclaurin expansion are determined, together with the conditions under which it terminates after a finite number of terms. This leads to a new variant of one-dimensional Romberg integration. The theory is then extended to quadrature over the s-dimensional simplex, the basic rules being obtained by an iterated use of one-dimensional rules. The application to Romberg integration is discussed, and it is shown how Romberg integration over the simplex has properties analogous to those for standard one-dimensional Romberg integration and Romberg integration over the hypercube. Using extrapolation, quadrature rules for the î-simplex can be generated, and a set of formulas can be obtained which are the optimum so far discovered in the sense of requiring fewest function values to obtain a specific polynomial degree.
منابع مشابه
Euler-Maclaurin Expansions for Integrals over Triangles and Squares of Functions Having Algebraic/Logarithmic Singularities along an Edge
We derwe and analyze the properties of Euler-Maclaurin expansions for the differences / ~ / s'(log.~) " /(.~. Qilfj is a combination of one-dimensional generalized trapezoidal rule approximations. 1. ~NlKOL)UC110N In this work we are intcrcstcd in deriving Euler-Maclaurin expansions for the singular double integrals where W(X) = x'(Iog x)'. s >-l.s'=O. 1. (1.3) and f(.~,~l) is as many times dif...
متن کاملRecent Developments in Asymptotic Expansions From Numerical Analysis and Approximation Theory
In this chapter, we discuss some recently obtained asymptotic expansions related to problems in numerical analysis and approximation theory. • We present a generalization of the Euler–Maclaurin (E–M) expansion for the trapezoidal rule approximation of finite-range integrals R b a f ðxÞdx, when f(x) is allowed to have arbitrary algebraic–logarithmic endpoint singularities. We also discuss effect...
متن کاملHybrid Gauss-Trapezoidal Quadrature Rules
A new class of quadrature rules for the integration of both regular and singular functions is constructed and analyzed. For each rule the quadrature weights are positive and the class includes rules of arbitrarily high-order convergence. The quadratures result from alterations to the trapezoidal rule, in which a small number of nodes and weights at the ends of the integration interval are repla...
متن کاملEuler-Maclaurin expansions for integrals with endpoint singularities: a new perspective
In this note, we provide a new perspective on Euler–Maclaurin expansions of (offset) trapezoidal rule approximations of the finite-range integrals I [f ] = ∫ b a f (x) dx, where f ∈ C∞(a, b) but can have general algebraic-logarithmic singularities at one or both endpoints. These integrals may exist either as ordinary integrals or as Hadamard finite part integrals. We assume that f (x) has asymp...
متن کاملThe Euler-Maclaurin expansion and finite-part integrals
In this paper we compare G p the Mellin transform together with its analytic continuation and G p the related Hadamard nite part integral of a function g x which decays exponentially at in nity and has speci ed singular behavior at the origin Except when p is a nonpositive integer these coincide When p is a large negative integer G p is well de ned but G p has a pole We show that the terms in t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010